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Shear-free turbulent boundary layers. Part 2. 
New concepts for Reynolds stress transport 
equation modelling of inhomogeneous flows 
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(Received 10 January 1994 and in revised form 18 February 1995) 

Models for the dissipation tensor and (slow) pressure-strain terms of the Reynolds 
stress transport equations are presented which are applicable near boundaries. These 
models take into account the large inhomogeneity and anisotropy that can be present 
near walls and surfaces, and are inspired by the physical insights developed in Part 1 
of this paper. The dissipation tensor model represents a fundamentally new approach 
to dealing with turbulence inhomogeneities. The pressure-strain model shows how the 
classic return-to-isotropy model of Lumley (1978) can be adapted to the near-wall 
region. The closure hypotheses underlying these two models are tested in an a priori 
fashion using direct numerical simulation (DNS) data. 

1. Introduction 
With a few notable exceptions (Durbin 1993; Launder & Shima 1989), the 

development of Reynolds stress transport equation models has tended to focus on 
unbounded flows such as shear layers, jets and homogeneous turbulence. In order to 
apply these models to wall-bounded flows of engineering interest, modifications must 
be made to account for the near-wall physics. The early works of Launder, Reece & 
Rodi (1975) and Hanjalic & Launder (1976) discuss ‘wall reflection’ effects and the 
‘wall echo ’ of the pressure. In order to account for these effects, functions of the wall- 
normal distance (or wall-normal vector) were used to alter the behaviour of various 
terms in the equations (principally the pressure-strain and dissipation tensor). Similar 
modifications were made by Gibson & Rodi (1989) to account for the effects of a free 
surface. 

More recently, considerable effort has been devoted to eliminating explicit 
dependence on the wall-normal coordinate from Reynolds stress transport models. 
Functions of the stress invariants, and sometimes the Reynolds number, are now 
generally used (see Tselepidakis 1991 or Hallback 1993). This makes the models 
applicable in complex domains. There has also been some interest in developing models 
which have the correct limiting behaviour as the wall is approached (Lai & So 1990; 
Launder & Reynolds 1983). The present work recognizes the importance of these 
developments. The models presented herein have the correct limiting behaviour for 
both walls and free surfaces, they do not include the wall-normal coordinate or the 
wall-normal vector, and they do not involve functions which must be externally 
specified. 
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The turbulence near a wall or surface is strongly inhomogeneous and anisotropic. 
The assumption of quasi-homogeneity, implicit to most Reynolds stress transport 
equation modelling, is no longer applicable. We must therefore look directly at the 
near-wall physics for modelling inspiration. The effects of mean shear produced by a 
wall are relatively easy to model. It is the more subtle effects of the wall, the ‘wall 
proximity’ effect, which is crucial to the development of better near-wall Reynolds 
stress transport equation models. The shear-free boundary layers analysed in Part 1 
(Perot & Moin 1995) provide the physical inspiration for modelling these more subtle 
effects. The models which are presented herein extend classical quasi-homogeneous 
models into the near-wall region. Away from the boundary they revert to their classical 
counterparts. For this reason, it is felt that these models reflect additional physics, not 
alternative physics, and therefore will be useful in a wide variety of engineering flows. 

2. Dissipation model 
What is described in this section is not so much a new model, but a technique for 

extending classical (quasi-homogeneous) models for the dissipation tensor into regions 
of large inhomogeneity (such as the near-wall region). Unlike previous techniques 
which were ultimately ad hoc in nature, this model for the near-wall dissipation tensor 
is based on a simple mathematical decomposition and physical observations of the 
behaviour of near-wall turbulence. 

2.1. Physical inspiration 
The physical inspiration for the dissipation model is found in figure 1. This figure is 
from simulations of a shear-free solid wall (Part 1). In these simulations a solid no-slip 
wall is suddenly inserted into isotropic homogeneous decaying turbulence. The wall 
interacts with the turbulence, creating a boundary layer in the turbulent statistics which 
grows into the turbulence as time progresses. 

The figure shows two planes parallel to the solid wall. The shading indicates the 
magnitude of the instantaneous tangential velocity. The plane in figure 1 (a)  is far from 
the wall, and the min/max values indicate that the r.m.s. intensity is very close to its 
free-stream value. The plane in figure 1 (b) is much closer to the wall and has much 
smaller min/max levels (and r.m.s. intensities). The crucial observation from these 
figures is that the structure of the turbulence in two planes is very similar (i.e. the 
location of the contours), while the magnitude or scale of the turbulent fluctuations 
(measured either by the min/max of the contours or by the r.m.s. intensities) differs by 
an order of magnitude from one plane to the other. The distance over which the 
turbulent intensities are damped by the wall is much smaller than the distance over 
which the eddy structure (as measured by the eye) changes appreciably. This implies 
that in very near-wall turbulence, there is a separation of scales, with the turbulent 
intensities changing much more rapidly than variations in the actual eddy structure. 
These observations also apply in the near-wall region of the standard flat-plate 
boundary layer (the shape of the streaks does not change as rapidly as the r.m.s. 
intensities, as one approaches the wall). Whether these observations apply in even more 
complicated situations is not a crucial point, since this is the inspiration, not the 
foundation, for the dissipation tensor model. 

The decomposition of turbulence into a generalized turbulent intensity component 
and a turbulent structure component can be accomplished mathematically in the 
following way : - 

ui = Qipiip. (1) 
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FIGURE 1. Contours of instantaneous tangential velocity in planes parallel to 
a shear-free solid wall. (Turbulent Reynolds number = 134.) 

Here, ui is the fluctuating velocity (with zero mean), Qip is a generalized turbulent 
intensity, and Cp is the velocity structure. This operation can also be thought of as a 
mapping or a transformation which scales the fluctuating velocity component, so that 
the resultant quantity, Gp, is nearly statistically homogeneous. Several appropriate 
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choices for Qip which accomplish this goal will be discussed in $2.3. However, at this 
point it is sufficient to observe that (1) is a mathematical decomposition, which is well 
defined as long as Qip is an invertible matrix. 

The turbulent intensity, Qip, has an overbar to indicate that it is considered to be a 
statistical average of turbulence quantities and a known quantity (related in some way 
to the r.m.s. intensities). Mathematically, the definition of Qip is arbitrary, but 
physically it is important to choose a definition for Qip which reflects its intended 
function as a measure of the turbulent intensity. In the context of this work, two 
definitions for Qip will be considered. One definition is based on the turbulent kinetic 
energy and the other is based on the Reynolds stress tensor. It is our observation that 
better definitions for Qip tend to produce better models, at the price of increased model 
complexity. The choices proposed in this paper are not necessarily optimal. 

Having chosen a definition for the generalized turbulent intensity, the properties of 
the velocity structure can then be derived from (1). The velocity structure (unlike the 
turbulent intensity tensor) retains the random spatial and temporal fluctuations of the 
original velocity field. The velocity structure can be thought of as a normalized 
fluctuating velocity scaled by the generalized turbulent intensity tensor. The result of 
this normalization by the generalized turbulent intensity is that the velocity structure 
becomes a homogeneous, or at least a quasi-homogeneous, turbulence quantity. It 
now becomes possible to think of the decomposition (equation (1)) as a splitting of 
turbulence into a fluctuating component (the velocity structure) and a generalized 
intensity (the turbulent intensity tensor). 

An analogy with Reynolds decomposition into mean and fluctuating velocities can 
be made. In the present case, the decomposition is multiplicative rather than additive, 
and rather than subtracting off the mean to get to fluctuating velocity, we are dividing 
by some turbulent intensity (the variance) to get the velocity structure. The unknown 
turbulent quantity of interest (the velocity structure) now has zero mean and unity (or 
nearly unity, depending on the choice of Q,) variance. Like Reynolds decomposition, 
this is a useful procedure because it extracts, as much as possible, the known statistical 
properties of the turbulence. 

2.2. Mathematical details 
The result of substituting this mathematical decomposition (equation (1)) into the 
definition for the homogeneous dissipation tensor, 

€ i j  = 2vu,,puj,p (2)  
- -  

is eij/(2v) = Qim, p(u”m u“n) Qjn,p + Qim(u“m, p u”,, p )  Qjn 

+ + < Q i r n , p < C j Z > , p  Qjjn+Qim(Z?m),p Qjn,p)  

+XQim,p  wmnp Q j j n -  Qim wmnp Qjn ,p) ,  ( 3 )  
~~ 

where the tensor Wmnp = (u”mu”n ,p -u“m,pu” jn )  is antisymmetric in m and n. 
This expression for the dissipation tensor splits the dissipation into three 

fundamental parts : the dissipation due to spatial variations in the generalized turbulent 
intensity (first term on the right-hand side), the dissipation due to spatial variations in 
the turbulent structure (second term on the right-hand side), and coupling terms 
representing the interaction of the first two dissipation terms with each other (last two 
terms on the right-hand side). 

The contribution to the dissipation due to variations in the generalized turbulent 
intensity (first term on the right-hand side) dominates in regions of large inhomogeneity 
where the turbulent intensity changes rapidly. This ‘ inhomogeneity term’ depends 
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only on the turbulent intensity tensor and the Reynolds stress tensor (by definition, 
ii, ii, = Q;: Rii Q;; where Rii = w). The generalized turbulent intensity, Qij, is 
assumed to be well defined in terms of other quantities available in the closure, so the 
inhomogeneity term does not need to be modelled. Because (3) is an exact expression, 
the inhomogeneity term can also be thought of as an 'exact term'. In regions where the 
inhomogeneity term dominates (such as near walls), (3) will give exact results for the 
dissipation tensor. 

The second term on the right-hand side of (3) involves a statistical quantity which 
will be called the structure dissipation tensor. This quantity is much easier to model 
than the dissipation tensor itself because the velocity structure is, in fact, quasi- 
homogeneous. Therefore, models based on the assumption of quasi-homogeneity (i.e. 
most classical dissipation tensor models) can be expected to work very well for this 
quantity. 

The final two coupling terms can be thought of as redistribution terms. The first 
coupling term (like the first term) does not need to be modelled. The second coupling 
term must be modelled, but is zero for homogeneous turbulence or when Qtj is a 
diagonal matrix. In the case where Q, is not diagonal, the second coupling term only 
contributes significantly to the off-diagonal components of the dissipation tensor, and 
even then it is relatively small. 

- -  

2.3. Dissipation model 
There are a number of choices that can be made for the generalized turbulent intensity 
tensor, Qii. A simple choice is an isotropic tensor proportional to the square root of 
the turbulent kinetic energy, Qij = k1/26ii, where k is the turbulent kinetic energy. The 
resulting expression for the dissipation then becomes 

3 = (k1'z),p(k1/2), R.. "+t (k ) ,p ($ )  R.. +kiii,piii,p. 
211 P k  , P  

(4) 

This equation is attractive because of its simplicity. The only term requiring modelling 
is the velocity structure dissipation, Eii = 21124, iii, p .  The inhomogeneity term and 
redistribution term (the first and second terms on the right-hand side) are well defined, 
and in the sense described previously, they are 'exact'. Despite its attractiveness, this 
model suffers from some basic flaws. In particular, it is only weakly realizable: the 
kinetic energy is guaranteed to remain positive when using this model, but the 
Reynolds stress tensor itself may become indefinite. Taking the trace of (4) gives the 
expression E = 2 ~ ( k l / ~ ) ,  (k"'), + k0. The quantity k0 can then be recognized as the 
mod$ed dissipation (6) suggested by Hanjalic & Launder (1976). This equation 
provides a mathematical justification for this frequently used quantity. 

A better dissipation model can be obtained by using a slightly more complicated 
choice for the velocity scale tensor, Qi, Qi, = R,. This makes Qi j  a generalized square 
root of the Reynolds stress tensor. This square root is not unique. For example, if Qi, 
is lower triangular, then Qi, is the Cholesky decomposition of R,. If Qi, is symmetric, 
then a somewhat more standard tensor square root is obtained, where the eigenvalues 
of Qi, are the square roots of the eigenvalues of Rii and the eigenvectors of the two 
matrices are the same. Because R, is positive definite, the square root is well defined. 
The sign of the square root is not important in the model because all terms involving 
the generalized intensity appear in pairs, cancelling any dependence on the sign. In our 
limited experience, the actual choice of which square root to use has not been critical: 
both the Cholesky decomposition and symmetric square root yield very similar results. 
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The matrix square root is a natural generalization of the definition used to derive (4). 
Irrespective of the form of Qim, the relation Qim Qjm = Rij implies that a = Sij, 
indicating that the velocity structure is nearly homogeneous and isotropic (higher- 
order moments of fii cannot be guaranteed to be isotropic, but might be expected to be 
nearly so). With the generalized intensity tensor defined by QimQjm = R,,, the 
expression for the dissipation takes the form 

- 

cij = 2vQim, p Qjm, p + Qim zmn Qjn + v(Qim, p W m n p  Qjn - Qim W m n p  Qjn, p ) ,  ( 5 )  

where Emn = 2vfim, u",, is, again, the velocity structure dissipation tensor. 
The first two terms of ( 5 )  are the now familiar inhomogeneous and homogeneous 

dissipation terms. The inhomogeneous term is 'exact' and the homogeneous term can 
be modelled with any classical quasi-homogeneous dissipation model. The third term 
of ( 5 )  (the term in parentheses) acts as a redistribution term. It is the second coupling 
term of (3) (the first coupling term is identically zero). The redistribution term is non- 
zero only when Qim has off-diagonal components, and is identically zero for a shear- 
free wall and a free surface. It is non-zero in fully developed turbulent channel flow, 
but contributes only to the off-diagonal dissipation component. Calculations of the 
redistribution term for an adverse pressure gradient boundary layer (Yang Na 1994, 
private communication) suggest that even for the off-diagonal dissipation, the 
redistribution term can be neglected. A probable explanation for the unimportance of 
the redistribution term is the fact that this term represents a coupling between 
mechanisms which occur at different scales. As indicated in figure 1, there is a 
significant difference in the scale over which the inhomogeneity in the turbulence 
changes and the scale over which the structure of the turbulence changes. In what 
follows, the redistribution term will be modelled by assuming that it is zero. 

2.4. Mathematical constraints 
It can be shown that every component of this model has the correct leading (and often 
higher-order) terms in a Taylor series expansion about a no-slip wall or a free surface. 
This non-trivial result holds irrespective of the model for the structure dissipation as 
long as the structure dissipation approaches a constant near the wall. It is a result of 
the fact that inhomogeneity dominates near boundaries, and the inhomogeneous term 
of ( 5 )  is exact. 

It is important that models have the correct asymptotic behaviour as they approach 
the wall (Launder & Reynolds 1983). For instance, at a solid wall the transverse 
components of the dissipation (ell and c3& must exactly balance the corresponding 
diffusion components. The boundary conditions imposed at the wall (aR,,/ay = 0, 
R,, = 0) will force this criterion to be true. If the dissipation is incorrect at the wall, the 
diffusion (and hence the solution) will also be incorrect at the wall. Some dissipation 
tensor models (see Lai & So 1990) have the limiting behaviour for a no-slip wall 
imposed upon them. These models will probably fail when presented with any other 
type of boundary such as a free surface, a transpiring wall, etc. This is not the case for 
the current model, which does not impose asymptotic behaviour but which obtains the 
correct asymptotic behaviour (whenever inhomogeneity dominates) by virtue of the 
'exact' inhomogeneous term. 

The present model also satisfies certain mathematical constraints. By its con- 
struction, the model is Galilean and tensorally invariant. It can be seen from ( 5 )  (with 
WmnP = 0) that if the structure dissipation tensor is positive definite, then the 
dissipation tensor can also be guaranteed to be positive definite. Realizability 
(Schumann 1977) in the shear-free low Reynolds number limit can be shown by 
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neglecting all but the viscous terms in the Reynolds stress evolution equations and 
evaluating the system of equations in the principal coordinate system of the Reynolds 
stress tensor. If it is assumed that Wmnp = 0 and Qij is symmetric, then it can be shown 
(see the Appendix) that - - om, t = @,, kk - Q, 6 d 2 ,  (6)  
where Zm is the structure dissipation tensor evaluated in the principal coordinate 
system (like Qm this is a diagonal matrix). Since the eigenvalues of Qij are simply the 
square roots of the eigenvalues of Rgj (by the assumption of symmetry), this equation 
indicates that non-zero turbulent intensities diffuse and decay exponentially in time, 
never actually reaching zero. Equation (6)  also guarantees that stresses that start at 
zero (such as at a solid wall) will remain zero for all time. Together, these conditions 
guarantee that this model will not cause the Reynolds stress tensor to become indefinite 
as time advances. 

2.5. Results 
The results presented in this section are apriori tests of the model. That is to say, DNS 
data for the Reynolds stresses and dissipation rate, E ,  are used when evaluating the 
model. The alternative, solving a closed set of Reynolds stress evolution equations with 
the model incorporated in the equations, has not been performed. An a priori test has 
been used because it specifically evaluates the closure hypotheses underlying a 
particular model (our primary concern here). It does not say anything about the 
solvability of the resultant Reynolds stress transport equation model. 

Two classical models for the dissipation tensor assume that dissipation is isotropic 
( E ~ ~ ~  = @,,) or that the dissipation is proportional to the Reynolds stress tensor 
(Rotta 1951), (E: = ( s /k )  Rgj). A quick look at the DNS results in the following figures 
indicates that the assumption of isotropy is not a good one near boundaries. We will, 
therefore, make comparisons only with Rotta’s model. The fact that Rotta’s model 
does not obtain the right limit (isotropy) at very high Reynolds numbers led Hanjalic 
& Launder (1 976) to propose a mixed model which uses a Reynolds-number-dependent 
blending function to obtain the right behaviour at high Reynolds numbers. The 
functional form of the blending function is found empirically. However, Mansour, 
Kim & Moin (1988) found that for DNS of turbulent channel flow, this more 
complicated formulation did not show any improvement over the Rotta model. 

In order to test the inhomogeneity model, a model for the structure dissipation 
tensor, 

must be assumed. We will assume the simplest possible model for that quantity: 

(8) 
where Z is one half of the trace of the structure dissipation tensor. This is essentially the 
classic isotropy model, but applied to the structure dissipation. Besides its simplicity, 
this model has some physical justification, since the structure dissipation should be 
close to homogeneous and isotropic. The near isotropy of the structure dissipation was 
the very motivation for the velocity decomposition given by (1). 

Equation ( 5 )  with (8) (and Wnm, = 0) gives the full inhomogeneity-capturing model 
for the dissipation tensor: 

where Qij is taken to be the symmetric square root of the Reynolds stress tensor. 
Note that when using the classical models, E must be specified. The quantity E equals 

the dissipation of mechanical energy only in homogeneous turbulence (for clarification 

2- gmn = 3Eamn, 

E!. 23 = 2vQim,  Qjm, + $ZRti, (9) 
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FIGURE 2. Dissipation near a shear-free solid wall (Re, = 134, t/T, = 2.0). (a)  Tangential 
dissipation, (b) normal dissipation: 0 ,  DNS data of Perot & Moin (1995); ----, Rotta model; -, 
inhomogeneity model; ........, 1st term of (9); -.-, 2nd term of (9). 

on this point, see Bradshaw & Perot 1993). Otherwise, it appears in the Reynolds stress 
transport equations principally as a scaling parameter. The quantity B also acts as a 
scaling parameter: it is an inverse timescale. The magnitude of Z can be derived from 
E (or vice versa) by requiring the trace of the inhomogeneity model to equal 2e. In the 
tests of the models, these quantities will be supplied from direct numerical simulation 
data, but in an actual modelling situation, they would have to be derived in some other 
manner (usually from a dissipation transport equation). The inverse timesale, Z, is 
smoother near walls than e, and impacts the overall model less in the near-wall region, 
because the terms involving B go to zero near the wall. This is an important point as 
it means that the near-wall behaviour of the model depends only on the Reynolds 
stresses, not on some model quantity such as e or Z. 

Figure 2 shows the non-zero components of the dissipation tensor near a shear-free 
wall (Part 1). Both the Rotta model and the inhomogeneity model capture the 
tangential dissipation well (figure 2 a). The breakdown of the inhomogeneity model 
into its two principal terms shows that the ‘exact’ inhomogeneous term dominates 
close to the wall. The normal dissipation (figure 2b) shows more variation between the 
models. Close to the wall the inhomogeneous term dominates, and is exact. The Rotta 
model goes to zero at the wall, but at the wrong rate. Away from the wall, the two 
models are very similar. This is by design, since the inhomogeneity model reverts to the 
Rotta model when inhomogeneity is not important. 
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FIGURE 3 .  Dissipation near a free surface (Re,  = 134, t /T,  - = 2.0). (a) Tangential dissipation, 
(b) normal dissipation. See figure 2 for legend. 

Note that given the right blending function, a mixed model of the type suggested by 
Hanjalic & Launder (1976) could also produce good results for this particular flow. 
However, this introduces a degree of empiricism not present in the current model. It 
is unlikely that a mixed model tuned for the solid wall would produce reasonable 
results for turbulence near a free surface. 

The case of turbulence near a free surface (also described in Part 1) is shown in 
figures 3 (a) and 3 (b). Turbulence near a free surface is only mildly inhomogeneous. 
Nonetheless, the inhomogeneity model continues to perform well, and obtains the 
exact limiting value at the surface for both components of the dissipation. The Rotta 
model overpredicts the tangential dissipation near the surface, and severely 
underpredicts the normal dissipation. Note that a mixed model (with a blending 
function based solely on the Reynolds number) has little chance of success for this flow, 
since the turbulent Reynolds number is nearly constant across the domain, and neither 
the isotropic model nor the Rotta model captures the dissipation behaviour adequately 
over the entire domain. 

The final test of the model is presented in figure 4(a-d). This shows the case of fully 
developed channel flow, where mean shear is an important factor. The data are from 
Mansour et al. (1988). Both the Rotta model and the inhomogeneity model work 
well for the streamwise component of the dissipation, though the inhomogeneity 
model captures the near-wall behaviour somewhat better. Far from the wall, the 
inhomogeneity model is only as good as the Rotta model (which, by design, it mimics 
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FIGURE 4(a, b) .  For caption see facing page. 

when inhomogeneity is small). The spanwise component of the dissipation is very similar 
to the streamwise one. Again, both models perform well, with the inhomogeneity 
model capturing the near-wall behaviour almost exactly. The normal dissipation and 
off-diagonal dissipation, eI2, also show very good near-wall behaviour when the 
inhomogeneity model is used. However, there is a significant underprediction of ez2 and 
overprediction of e12 away from the wall. This is a result of the structure dissipation 
model. Improvements in these dissipation components will occur when better quasi- 
homogeneous dissipation models are developed. The Appendix suggests that improved 
quasi-homogeneous models might include terms involving Reynolds stress anisotropy. 
Although the model for the off-diagonal dissipation looks poor, it could produce very 
reasonable results when used in a full closure. This is because only the very near-wall 
dissipation is important in the evolution of R12. Away from the wall, where the model 
agreement is not as good, the dissipation is not an important term (see Mansour et al. 
1988). Tests of the model in an adverse pressure gradient boundary layer (Yang Na 
1994, private communication) show very similar behaviour. 

The inhomogeneity model extends classical quasi-homogeneous dissipation models 
into the very near-wall region. It gives extremely good agreement very close to a wall 
or boundary. However, away from the boundary, the inhomogeneity model is only as 
good as the quasi-homogeneous model upon which it is based. We have chosen to use 
the Rotta model in these demonstrations. If better quasi-homogeneous dissipation 
models exist, or are developed in the future, they can easy be incorporated into this 
framework. 
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FIGURE 4. Dissipation in turbulent channel flow. (a) Streamwise dissipation, (b) spanwise 
dissipation, (c)  normal dissipation, ( d )  shear stress dissipation. 0 ,  DNS data of Mansour et al. 
(1988); ----, Rotta model; -, inhomogeneous model; . . . . . . . . , first term of (9); -.-, second 
term of (9). 

3. Pressure-strain model 
3.1. Introduction 

The classic model for the (slow) pressure-strain term, is the Rotta (1951) return-to- 
isotropy model, I7,, = - c, €aij, where aij = R,/k-  2/36.. . Return to isotropy has been 
shown to occur in homogeneous turbulence in the experiments of Lumley & Newman 
(1977). More recent models for the slow pressure-strain continue to be based on the 
idea that the pressurestrain must be a function of the Reynolds stress anisotropy 
tensor. These models add higher-order terms in the anisotropy tensor, a,,, to the 
standard Rotta model. Examples of models of this type are Launder & Tselepidakis 
(1991), and Speziale, Sarkar & Gatski (1991). 

The models of Lumley (1978) and Shih & Lumley (1986) take the slightly different 
approach of including the anistropy of the dissipation tensor into the return-to-isotropy 
model, so that Z7ii-~ij+(2/3)e6ii = -Peai,. This results from examination of the 
evolution equation for the anisotropy tensor in shear-free homogeneous turbulence, 

13. 

1 
= - (17, - cij + + €aij). 

In shear-free homogeneous turbulence, P > 1 guarantees return to isotropy, and /3 = 1 
indicates no change in the anisotropy tensor with time (which Lumley suggests is the 
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high Reynolds number limit). At low Reynolds numbers, eii - (2/3) edij --f €aij, and no 
return to isotropy is expected (see Lumley 1978), so nii+0 (this phenomenon has 
been observed in the experiments of Hallback & Johansson 1992). Note that these 
previous conditions only strictly apply in shear-free homogeneous turbulence. For 
inhomogeneous turbulence, return to isotropy is neither expected, nor observed. 

When boundaries are present, the slow pressurestrain term can be split into a 
standard nonlinear part, and a ‘wall reflection part’ because the usual free-space 
Green’s function changes close to the boundary (Launder et al. 1975). Since both terms 
are ‘slow’ (do not depend explicitly on changes in the mean velocity gradients) we will 
model them collectively. However, we will show that the slow pressurestrain near a 
boundary is fundamentally different from the pressure-strain term occurring in quasi- 
homogeneous flows (far from the boundary), and the proposed model will take this 
change in behaviour into account. 

3.2. Pressure-strain model 

There have been various proposals on how to include near-wall effects into the 
pressure-strain term. Shih & Lumley (1986) include a coordinate dependence ( L / y )  
into the coefficient /3. Launder & Shima (1989) and Launder & Tselepidakis (1991) use 
the wall-normal vector and damping functions based on the wall-normal coordinate 
direction. In this work, we abandon such geometry-dependent formulations and 
attempt to produce a near-wall pressure-strain model based on the physical processes 
that occur near the wall (for a similar approach see Durbin 1993). 

The physical insights into near-wall turbulent flow developed in Part 1 are a useful 
guide to this type of pressure-strain modelling. In Part 1 it was shown that the near- 
wall region can be viewed as a balance between two opposing events: impingements 
(splats) and ejections (antisplats). Both of these events transfer energy among the 
Reynolds stress components (the essence of the pressure-strain term), but they tend to 
exactly cancel unless viscous effects are present. So near boundaries viscous effects 
(dissipation and diffusion) tend to control the amount of intercomponent energy 
transfer. This is a considerably different process from that which occurs in 
homogeneous turbulence, where it is relatively clear that anisotropy in the Reynolds 
stresses causes intercomponent energy transfer. The different processes are reflected by 
the fact that in homogeneous turbulence there is a return to isotropy, while near 
boundaries there is a tendency to move away from isotropy. 

Figure 5(a) shows DNS data for the pressurestrain term (rill = -an2,) near a 
shear-free solid wall at Re,  = 134 and time t / T ,  = 1 .O. Close to the wall, there is a large 
transfer of energy from the normal stress component to the tangential stress 
components. This is due to the imbalance between splats and antisplats. A plot of the 
anisotropy in the dissipation and diffusion terms (also figure 5 a) shows that there is 
very strong correlation between those terms and the peak in the pressure-strain close 
to the wall. We believe that this correlation exists because, close to the wall, viscous 
processes control the rate of intercomponent energy transfer. 

Farther away from the wall the pressurestrain becomes negative, indicating a 
transfer of energy from the tangential stresses to the normal stress component. This is 
the more standard return-to-isotropy type of behaviour. The return-to-isotropy model 
(- €aij) is also plotted in figure 5 (a).  It shows very good agreement with the DNS data 
in the region far from the wall. 

The following model for the pressurestrain is therefore proposed : 
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FIGURE 5. Pressure-strain near a shear-free wall (Re, = 134, t / T ,  = 1.0): (a) 0 ,  DNS data; 
____ , dissipation/diffusion anisotropy ; . . . . . . . . , return-to-isotropy model. (b) 0,  DNS data; 
--__ , Lumley’s model; . . . . . . . . , Launder & Tselepidakis’ model; -, present model. 

where eij = eij - uRij, kk  - (2/3) Faiij is the dimensional anisotropy in the diffusion and 
dissipation tensors, and P = (eii - vRii, k k ) / 2  is the trace of these viscous tensors. For 
homogeneous flows, and C, = 1, equation (1 1) is identical to the model of Lumley. For 
inhomogeneous flows, there are some important differences. This model includes 
anisotropy of the diffusion term along with anisotropy of the dissipation, and the 
return to isotropy has been modified by including the trace of the diffusion term. As 
indicated previously, we believe that the inclusion of dissipation plus diffusion is more 
appropriate for near-wall inhomogeneous flows than the dissipation alone. Using the 
trace of the dissipation and the diffusion in the return-to-isotropy term (rather than just 
e)  follows logically from this choice, and has the added benefit of causing the return- 
to-isotropy term to go to zero near the wall where the return-to-isotropy mechanism 
does not appear to play an important role (figure 5a). 

The choice of C, = 1 results in a Reynolds stress equation closure in which only the 
trace of the dissipation tensor needs to be modelled (not the tensor itself). Perhaps this 
was partly Lumley’s motivation for this choice. However, the DNS data suggests 
C, =k 1. When C, =k 1 an accurate model for the dissipation tensor is required. The 
issue of accurate dissipation tensor modelling has been addressed in $2. 

Using (1 l), the conditions on the return-to-isotropy coefficient /3 change slightly. In 
high Reynolds number homogeneous turbulence /3 still goes to a value of one. 
However, in low Reynolds number homogeneous turbulence /3+ C, (rather than 
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p+ 1 as in the Lumley model). When the turbulence is inhomogeneous little can be said 
about these coefficients. In what follows the choice, C, = 2.3 and p = 1 + 1.3Aexp 
( -Reg2)  will be used, where A is the ‘flatness’ parameter described in $2.5, and Re, 
is the turbulent Reynolds number. This choice for /3 is functionally very similar to that 
proposed by Lumley (1978). It produces the correct Reynolds number limits in 
homogeneous flow. The value for C, was chosen to fit the simulation data. For the 
near-wall situations studied herein, either A is very small (near the wall) or exp (- Reg2) 
is small (away from the wall), so /3 z 1 throughout these flows. This means that the 
model results presented herein essentially use the value p = 1 ; they do not test the 
general validity of the expression for ,!I. 

The use of dissipation anisotropy for a (slow) pressure-strain model is strongly 
reminiscent of the practice of using production anisotropy (4, - PFk Si,/3) in fast 
pressure-strain models (Launder & Shima 1989). Energy source terms (like production) 
could easily affect turbulence in a similar way to viscous sink terms (dissipation and 
diffusion). We find it very appropriate to model the fast and slow terms of the 
pressure-strain in this complementary manner. 

3.3. Results 
A comparison of the present model (equation (1 1)) with DNS data, and other slow 
pressure-strain models is shown in figure 5(b) for turbulence near a shear-free solid 
wall. The present model, which includes the effects of dissipation and diffusion 
anisotropy, shows very good agreement with the DNS data. 

The model of Lumley (1978) is essentially 

17.. 23 = e..-@i,-eai,. 23 (12) 

This assumes a value /3 = 1 .O. Lumley gives a more complicated expression for p, but 
in these flows this complicated expression reduces to p % 1.0. Lumley’s model is not 
designed for strongly inhomogeneous flows, so good agreement with the DNS data 
close to the wall is not expected. It is presented here because it is the starting point for 
the present model and shows the improvement resulting from these proposed 
modifications. 

The model of Launder & Tselepidakis (1 99 1) is specifically designed for near-wall 
flows. It is given by the expression 

nij = - c1 €(a,, + 0.7(aik ak, -amn anm Si,/3)), (13) 

where c, = 6.3A[min(A,0.6)]”2[1 -max(l -Re,/140,0.0)]. (14) 

This is essentially a nonlinear extension of the return-to-isotropy model. For this 
reason (and the fact that c1 strongly damps the model near a boundary) this model does 
not capture the near-wall intercomponent energy transfer effects due to splats and 
antisplats. 

Similar results for turbulence near a free surface (see Part 1) are shown in figure 6. 
As in the previous figure, the turbulent Reynolds number of the flow is initially 134, 
and the time at which the models were evaluated is t/T, = 1.0. Figure 6(a) shows DNS 
data for the pressure-strain, as well as the anisotropy in the dissipation and diffusion 
and the return-to-isotropy term ( - ea,). The magnitude of the pressure-strain term 
near a free surface is generally smaller than that near a solid wall. However, many of 
the qualitative features remain similar. Close to the surface, the turbulence moves away 
from isotropy. The anisotropy of the combined dissipation and diffusion correlates 
fairly closely with this near-wall behaviour. Farther away from the wall, the more 
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FIGURE 6. Pressure-strain near a free surface (Re, = 134, t / T ,  = 1.0). See figure 5 for legend. 

standard return-to-isotropy type of behaviour is recovered, and close agreement with 
the return-to-isotropy term is found. 

Figure 6(b) indicates how the various models perform for turbulence near a free 
surface. The agreement of the present model with the DNS data is not good in this 
situation. However, the model does display the right qualitative features : return to 
isotropy far from the surface, and a sharp increase in the pressure-strain very close to 
the wall. A change in the value of C, (to 0.5) gives a model that agrees very closely with 
the DNS data, and which outperforms the other two models. This indicates that C, 
would be better represented as a function of the Reynolds stress invariants. 
Determination of this function is a subject of present research. 

4. Conclusions 
A new modelling technique for extending classical dissipation models into regions of 

large inhomogeneity has been developed. It is derived from a simple mathematical 
decomposition, and uses the square root of the Reynolds stress tensor as a generalized 
turbulent intensity to transform (or map) the fluctuating velocity into a quasi- 
homogeneous quantity (the velocity structure). The resulting inhomogeneity model, 
derived from this decomposition, satisfies all known mathematical constraints and is 
relatively simple to implement. It has been shown that the model gives superior results 
in both wall and surface bounded flows, as well as shearing flows. The mathematical 
formalism developed for the dissipation model has also been applied, with success to 
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the modelling of the scalar dissipation and heat flux dissipation (Malan & Johnston 
1993). 

The slow pressure-strain model presented herein generalizes the (quasi-homo- 
geneous) model of Lumley, so that the model is appropriate near boundaries. The 
principal alterations were : (i) the use of dissipation and diffusion for both the leading 
anisotropy term and the scaling of the return to isotropy term, and (ii) a non-unity 
coefficient, C,. It appears that C, (like /3) is best represented as a function of the various 
tensor invariants, but this functional dependence has not been explored further. 
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Appendix. Dissipation tensor realizability 
This Appendix examines some of the consequences of using the dissipation tensor 

model (proposed in $2) in a full Reynolds stress closure. In particular, we will focus on 
the low Reynolds number limit, where viscous effects (dissipation and diffusion) 
dominate. In this limit the Reynolds stress equations become 

The ij tensor notation has been dropped in favour of a simpler matrix representation 
of the problem, where R is the Reynolds stress tensor, R,,, and E is the dissipation 
tensor, ci j .  

Using the identity R = QQT and modelling the dissipation tensor with (5) and 
Wnmp = 0 gives 

where /? is the structure dissipation tensor, Zij. 
is modelled in terms of the Reynolds stress tensor. This 

means that we can write E =AR), wherefis some analytical function. All dissipation 
models known to the authors fall into this category. This assumption implies that t?? and 
R have the same eigenvectors (principal directions). If Q is taken to be the symmetric 
square root of R, then Q also has the same principal directions as R and E. 

R, t  = vR,,,-E. (A 1) 

( Q , t - v Q , , , ) Q T + Q ( Q ~ - v Q ~ k k )  = -QEQT,  (A 2) 

It is now assumed that 

Writing (A 2) in the principal coordinate system gives 

where a hat indicates the quantity is evaluated in the principal system. Q and € are 
therefore diagonal matrices, Q , t  and Q,,, need not be diagonal. 

Note that if the diagonal components of Q are non-zero, and Q is a symmetric tensor 
(which it is), then (A 3) implies that the off-diagonal components of Q, - vQ, ,, are 
zero. This in turn, means that we can write 

Q, t  = vQ,,,-QE/2, 
which is the expression invoked in $ 2.4 when discussing realizability. 
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